Algebraic torus actions on affine algebraic surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyhedral Divisors and Algebraic Torus Actions

We provide a complete description of normal affine varieties with effective algebraic torus action in terms of what we call proper polyhedral divisors on semiprojective varieties. Our theory extends classical cone constructions of Dolgachev, Demazure and Pinkham to the multigraded case, and it comprises the theory of affine toric varieties.

متن کامل

Some Basic Results on Actions of Non-affine Algebraic Groups

We study actions of connected algebraic groups on normal algebraic varieties, and show how to reduce them to actions of affine subgroups. This yields a structure theorem for normal equivariant embeddings of semi-abelian varieties, and a characteristic-free version of the Borel–Remmert theorem.

متن کامل

Special Lagrangian submanifolds and Algebraic Complexity one Torus Actions

In the first part of this paper we consider compact algebraic manifolds M with an algebraic (n − 1)-Torus action. We show that there is a T -invariant meromorphic section σ of the canonical bundle of M . Any such σ defines a divisor D. On the complement M ′ = M −D we have a trivialization of the canonical bundle and a T -action. If H(M ′,R) = 0 then results of [2] show that there is a Special L...

متن کامل

Topology of Kempf–Ness sets for algebraic torus actions

In the theory of algebraic group actions on affine varieties, the concept of a Kempf–Ness set is used to replace the geometric quotient by the quotient with respect to a maximal compact subgroup. By making use of the recent achievements of “toric topology” we show that an appropriate notion of a Kempf–Ness set exists for a class of algebraic torus actions on quasiaffine varieties (coordinate su...

متن کامل

On Holomorphic Curves in Algebraic Torus

We study entire holomorphic curves in the algebraic torus, and show that they can be characterized by the “growth rate” of their derivatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2005

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2004.10.021